The effect of physical exercise on oxidative phosphorylation in mitochondria in patients with type 2 diabetes mellitus

ˑ: 

Yun Yufen
The National Research Tomsk State University, Tomsk

Milovanova K.G.
The National Research Tomsk State University, Tomsk

Dyakova E.Yu.
The National Research Tomsk State University, Tomsk

Qu Xianbo
The National Research Tomsk State University, Tomsk

Objective of the study is to systematically assess the effect of physical exercise on the function of the mitochondrial oxidative phosphorylation system (OxPhos) in patients with type 2 diabetes mellitus.
Methods and structure of the study. The meta-analysis included 13 scientific publications selected from the international databases Web of Science and PubMed. Statistical analysis was performed using Stata version 16.0.
Results and conclusions. The obtained data showed that physical training promotes activation of the oxidative phosphorylation system in skeletal muscles of patients with diabetes mellitus, increasing the efficiency of mitochondrial energy metabolism. The most pronounced positive effect on the OxPhos complex was revealed during combined training (aerobic and strength training), while strength exercises more effectively increased the level of citrate synthase (CS). Physical activity improves mitochondrial function due to activation of oxidative phosphorylation processes in patients with diabetes mellitus. Strength training, as well as its combination with aerobic exercise, can be considered as a promising non-drug strategy for correcting metabolic disorders in skeletal muscles.

Keywords: type 2 diabetes mellitus; physical exercise; mitochondria; oxidative phosphorylation; skeletal muscles.

References

  1. Alzahrani, S., Alharbi, W., Khawaji, H., Elashmony, S. & Alhindi, Y. (2023) ‘A mini review study on mitochondria and citrate synthase’, International Journal of Pharmaceutical Research and Allied Sciences, 12(2), pp. 133–138.
  2. Antoun, G., McMurray, F., Thrush, A.B., Patten, D.A., Peixoto, A.C., Slack, R.S., McPherson, R., Dent, R. & Harper, M.E. (2015) ‘Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals’, Diabetologia, 58(12), pp. 2861–2866.
  3. Freyssenet, D., Berthon, P. & Denis, C. (1996) ‘Mitochondrial biogenesis in skeletal muscle in response to endurance exercises’, Archives of Physiology and Biochemistry, 104(2), pp. 129–141.
  4. Hood, D.A. (2001) ‘Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle’, Journal of Applied Physiology, 90(3), pp. 1137–1157.
  5. Højlund, K., Yi, Z., Lefort, N., Langlais, P., Bowen, B., Levin, K., Beck-Nielsen, H. & Mandarino, L.J. (2010) ‘Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle’, Diabetologia, 53(3), pp. 541–551.
  6. Korrel’skiy, L., Taylor, M.A., Puchta, U., Konopka, P., Paszko, A., Citko, A., Szczerbinski, K., Goscik, J., Gorska, M., Larsen, S. & Kretowski, A. (2021) ‘The response of mitochondrial respiration and quantity in skeletal muscle and adipose tissue to exercise in humans with prediabetes’, Cells, 10(11), p. 3013.
  7. Lewis, M.T., Kasper, J.D., Bazil, J.N., Frisbee, J.C. & Wiseman, R.W. (2019) ‘Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to type 2 diabetes’, International Journal of Molecular Sciences, 20(21), p. 5271.
  8. Larsen, S., Nielsen, J., Hansen, C.N., Nielsen, L.B., Wibrand, F., Stride, N., Schroder, H.D., Boushel, R., Helge, J.W., Dela, F. & Hey-Mogensen, M. (2012) ‘Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects’, The Journal of Physiology, 590(14), pp. 3349–3360.
  9. Montero, D. & Lundby, C. (2017) ‘Refuting the myth of nonresponse to exercise training: “nonresponders” do respond to higher dose of training’, The Journal of Physiology, 595(11), pp. 3377–3387.
  10. Ritov, V.B., Menshikova, E.V., He, J., Ferrell, R.E., Goodpaster, B.H. & Kelley, D.E. (2005) ‘Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes’, Diabetes, 54(1), pp. 81–84.
  11. Szczerbinski, L., Taylor, M.A., Puchta, U., Konopka, P., Paszko, A., Citko, A., Szczerbinski, K., Goscik, J., Gorska, M., Larsen, S. & Kretowski, A. (2021) ‘The response of mitochondrial respiration and quantity in skeletal muscle and adipose tissue to exercise in humans with prediabetes’, Cells, 10(11), p. 3013.
  12. Wang, L., Mascher, H., Psilander, N., Blomstrand, E. & Sahlin, K. (2011) ‘Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle’, Journal of Applied Physiology, 111(5), pp. 1335–1344.
  13. Kelley, D.E., He, J., Menshikova, E.V. & Ritov, V.B. (2002) ‘Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes’, Diabetes, 51(10), pp. 2944–2950.
  14. Wyckelsma, V.L., Levinger, I., McKenna, M.J., Formosa, L.E., Ryan, M.T., Petersen, A.C., Anderson, M.J. & Murphy, R.M. (2017) ‘Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training’, The Journal of Physiology, 595(11), pp. 3345–3359.